Публикации

2024 год

  1. Maslovskaya A.G., Veselova E.M., Chebotarev A.Yu., Kovtanyuk A.E. Theoretical and numerical study of the Landau-Khalatnikov model subjected to the dynamic simulations of 2D domain pattern formation in ferroelectrics, Applied Mathematics and Computation. 2024. V. 466. P. 128471. https://doi.org/10.1016/j.amc.2023.128471
  2. Brizitskii R.V., Maksimova N.N. On the uniqueness of a solution to the multiplicative control problem for the electron drift–diffusion model, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki,, 2024. V. 34(1). P. 3–18. https://doi.org/10.35634/vm240101
  3. Moroz L.I., Maslovskaya A.G. A Fractional-differential approach to numerical simulation of electron-induced charging of ferroelectrics, journal of applied and industrial mathematics, 2024. V. 18. No. 1. P. 137–149. https://doi.org/10.1134/S1990478924010125
  4. Yixuan S., Maslovskaya A. Computer-assisted approach to study of bacterial communication for landau-based model of population growth, 2024 Applied Mathematics, Computational Science and Mechanics: Current Problems (AMCSM), Voronezh, Russian Federation, 2024. P. 1–7. https://doi.org/10.1109/AMCSM59829.2023.10525808
  5. Moroz L., Maslovskaya A. Time-fractional approach for numerical simulation of temperature-dependent hysteresis in ferroelectrics, 2024 Applied Mathematics, Computational Science and Mechanics: Current Problems (AMCSM), Voronezh, Russian Federation, 2024. P. 1–6. https://doi.org/10.1109/AMCSM59829.2023.10525810
  6. Саруханян С.К., Масловская А.Г. Концепция верификации работы клеточных автоматов при вариации геометрических решёток для модели диффузионного процесса // Математические структуры и моделирование. Омск, 2024, №2(70), С. 63-78. https://doi.org/10.24147/2222-8772.2024.2.63-79
  7. Салмиянов В.О., Синагатулин А.А., Масловская А.Г. Система нейросетевой диагностики морфологических характеристик рентгеновских снимков легких: реализация на платформе MATLAB // Информатика и системы управления. 2024, № 2 (80), С. 97-109. https://doi.org/10.22250/18142400_2024_80_2_97
  8. Бризицкий Р.В., Максимова Н.Н. Задачи мультипликативного управления для диффузионно-дрейфовой модели зарядки неоднородного полярного диэлектрика // Дифференциальные уравнения. 2024, № 60(5), С. 643-659. https://doi.org/10.31857/S0374064124050062
  9. Евдокимова В.В., Колесников С.В., Афанасов Л.С., Масловская А.Г. Концепция гибридного интеллектуального анализа сердечных ритмов: применение спектральных методов и машинного обучения // Информатика и системы управления, 2024, № 3(81).С. 121-135 https://doi.org/10.22250/18142400_2024_81_3_121
  10. Мороз Л.И. Алгоритм для численного решения диффузионно-реакционно-дрейфового уравнения с дробной производной по времени и координате // Моделирование и анализ данных, 2024, № 3(14). С. 105–117. https://doi:10.17759/mda.2024140306
  11. Maslovskaya A., Moroz L. Fractional diffusion-wave modification of Landau-Khalatnikov model applied to polarization switching in ferroelectric nanowires, Proc. of the IEEE, Days on Diffraction, 2024. Р. 1–6
  12. Шевкун И.А., Масловская А.Г. Гибридный подход к моделированию и оценке структурных особенностей паттернов культивированных бактерий // Математическое моделирование, 2024, Т. 36, № 6, С. 1-15.

2023 год

  1. Veselova E., Maslovskaya A., Chebotarev A. Size-Dependent Switching in Thin Ferroelectric Films: Mathematical Aspects and Finite Element Simulation, Computation. 2023. V. 11. P. 14. https://doi.org/10.3390/computation11010014
  2. Shuai Y., Maslovskaya A.G., Kuttler C. Modeling of bacterial communication in the extended range of population dynamics, Mathematical Biology and bioinformatics, 2023. V. 18(1). P. 89-104 https://doi.org/10.17537/2023.18.89
  3. Moroz L. I., Barabash T. K., Maslovskaya A.G. Numerical simulation of polarization switching kinetics in ferroelectrics based on fractional Kolmogorov – Avrami model, International Workshop on Mathematical Modeling and Scientific Computing 2022, IOP Publishing. Journal of Physics: Conference Series, 2023. V. 2514. P. 012016 (8). doi:10.1088/1742-6596/2514/1/012016
  4. Maslovskaya A.G., Shuai Y., Kuttler Ch. In silico studies of bacterial quorum sensing during population dynamics: simulations by using COMSOL Multiphysics, International Workshop on Mathematical Modeling and Scientific Computing 2022, IOP Publishing. Journal of Physics: Conference Series, 2023. V. 2514. P. 012015 (10). doi:10.1088/1742-6596/2514/1/012016
  5. Shuai I., Maslovskaya A.G. Differential model of bacterial communication during the evolution of daughter colonies: Finite element implementation. Bulletin of Voronezh State Technical University, 2023. V. 19(3). P.36-42. https://doi.org/10.36622/VSTU.2023.19.3.006 (in Russian)
  6. Zhiltsov A.V., Maksimova N.N. A dual method for solving the equilibrium problem of a body containing a thin defect. Numerical Analysis and Applications, 2023. V. 16. P. 154-166. https://doi.org/10.1134/S1995423923020052
  7. Sarukhanian S., Maslovskaya A., Kuttler C. Three-dimensional cellular automaton for modeling of self-similar evolution in biofilm-forming bacterial populations. Mathematics, 2023. V. 11. P. 3346 (18). https://doi.org/10.3390/math11153346
  8. Moroz L. I., Maslovskaya A. G. Numerical modeling of diffusion-wave polarization processes in ferroelectrics based on the time-fractional Landau–Khalatnikov equation // Proceedings of the International Conference Days on Diffraction 2023, DD 2023. 2023. С.150-155. https://doi.org/10.1109/DD58728.2023.10325707
  9. Саруханян С.К., Масловская А.Г. Алгоритм клеточно-автоматного моделирования 2d эволюции бактериальных пленок в процессе непрерывного культивирования // Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. Воронеж, 2023, №4, С. 19-30.
  10. Brizitskii R.V., Maksimova N.N., Maslovskaya A.G. Inverse problems for the diffusion–drift model of charging of an inhomogeneous polar Dielectric, Computational Mathematics and Mathematical Physics, 2023, V.63, №3, P. 1685–1699. DOI: https://doi.org/10.1134/S0965542523090051
  11. Максимова Н.Н., Чепикова А.Ю. Исследование динамики хронического лимфолейкоза при иммуно- и химиотерапевтическом лечении: модель с запаздыванием, Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии, №4, С. 5–18. https://doi.org/10.17308/sait/1995-5499/2023/4/5-18
  12. Евдокимова В.В., Афанасьева Е.Ю., Масловская А.Г. Система фрактальной диагностики скейлинговых и спектральных характеристик сигналов аускультации легких, Информатика и системы управления, 2023, №3(77), С. 48–62., https://doi.org/10.22250/18142400_2023_77_3_48
  13. Салмиянов В.О., Шевкун И.А., Масловская А. Г. Адаптированные алгоритмы интеллектуальной спецификации скейлинговых характеристик морфологии культивированных бактерий, Информатика и системы управления, 2023, №4(78), С. 75–89. https://doi.org/10.22250/18142400_2023_78_4_75
  14. Салмиянов В. О., Масловская А.Г. Программный комплекс системы сегментации и мультифрактальной диагностики цифровых изображений компьютерной томографии легких, Вестник Томского государственного университета. Секция: Управление, вычислительная техника и информатика, 2023, № 64, С. 105–115.
  15. Пак Н.М., Ковтанюк А.Е., Итерационный алгоритм решения начально-краевой задачи для квазилинейной модели сложного теплообмена, Дальневосточный математический журнал, 2023, Т. 23, № 2. С. 240–245. https://doi.org/10.47910/FEMJ202320
  16. Chebotarev A.Yu., Park N.M., Mesenev P.R., Kovtanyuk A.E. Mathematical modeling of complex heat transfer in the context of the endovenous laser ablation, Journal of Physics: Conference Series, 2023, V. 2514. P. 012006. https://doi.org/10.1088/1742-6596/2514/1/012006

2022 год

  1. Мороз Л.И., Масловская А.Г. Дробно-дифференциальные модели динамических откликов сегнетоэлектриков. – М.: Наука, 2022. – 159 с. – ISBN 978-5-02-040959-0
  2. Maslovskaya A., Kuttler Ch., Chebotarev A., Kovtanyuk A. Optimal multiplicative control of bacterial quorum sensing under external enzyme impact, Mathematical Modelling of Natural Phenomena, 2022. V. 17(29). P. 1–15. https://doi.org/10.1051/mmnp/2022031
  3. Kuttler C., Maslovskaya A. Computer-Assisted Modelling of Quorum Sensing in Bacterial Population Exposed to Antibiotics, Frontiers in Appl. Math & and Statistics, 2022. V. 8. P. 951783 (17). https://doi.org/10.1007/s11071-022-08071-5
  4. Shuai Y., Maslovskaya A., Kuttler C. 2D reaction-diffusion model of quorum sensing characteristics during all phases of bacterial growth, Far Eastern Mathematical Journal, 2022. V. 22. No 2. P. 232–237. https://doi.org/10.47910/FEMJ202231
  5. Maslovskaya A., Moroz L. Computational techniques for time-fractional modeling of thermal wave propagation in ferroelectrics, Proc. of the IEEE, Days on Diffraction, 2022. Р. 95–100.
  6. Moroz L.I., Veselova E.M., Maslovskaya A.G. Simulation of thickness-dependent polarization switching in ferroelectric thin films using COMSOL Multiphysics, Smart innovation, systems and technologies, 2022. P. 49–57. https://doi.org/10.1007/978-981-16-8759-4_6
  7. Brizitskii R.V., Maksimova N.N., Maslovskaya, A.G. Theoretical analysis and numerical implementation of a stationary diffusion-drift model of polar dielectric charging, Comput. Math. and Math. Phys., 2022. V. 62. P. 1680–1690. https://doi.org/10.1134/S0965542522100037
  8. Maksimova N.N., Brizitskii R.V. Inverse problem of recovering the electron diffusion coefficient / Far Eastern Mathematical Journal, 2022. V. 22. No 2. P. 200–205.
  9. Veselova E.M. Analysis and computer implementation of the mathematical model of 180º domain structures formation in ferroelectrics, Far Eastern Mathematical Journal, 2022. V. 22. No 2. P. 257–262.
  10. Moroz L. I. Time-fractional numerical modelling applied to diffusion-wave processes of bacterial biomass growth, Far Eastern Mathematical Journal, 2022. V. 22. No 2. P. 207–212.

2021 год

  1. Moroz L.I., Maslovskaya A.G. Fractional differential model of domain boundary kinetics in ferroelectrics: a computational approach, AIP Conference Proceedings, 2021. V. 2328. P. 020001 (5). https://doi.org/10.1063/5.0042140
  2. Kuttler C., Maslovskaya A. Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing, Applied Mathematical Modelling, 2021. V. 93. P. 360 – 375. https://doi.org/10.1016/j.apm.2020.12.019
  3. Maslovskaya A., Kuttler C., Moroz L. Numerical simulation of time-fractional diffusion-wave processes applied to communication in bacterial populations, Proceedings of the IEEE, «Days on Diffraction», 2021. P. 114–119. https://doi.org/10.1109/DD52349.2021.9598648
  4. Maslovskaya A.G., Moroz L.I., Chebotarev A.Yu., Kovtanyuk A.E. Theoretical and numerical analysis of the Landau-Khalatnikov model of ferroelectric hysteresis, Communications in Nonlinear Science and Numerical Simulation, 2021. V. 93. P. 105524 (13). https://doi.org/10.1016/j.cnsns.2020.105524
  5. Moroz L.I., Maslovskaya A.G. Numerical simulation of an anomalous diffusion process based on a scheme of a higher order of accuracy, Mathematical Models and Computer Simulations, 2021. V. 13. No. 3. P. 492–501.

2020 год

  1. Maksimova N.N., Maslovskaya A.G. A mathematical model of stationary charging processes in polar dielectrics: theoretical analysis, IOP Conf. Series: Journal of Physics, 2020. V. 1666. P. 012030(7). https://doi.org/10.1088/1742-6596/1666/1/012030
  2. Kuttler C., Maslovskaya A. Wave effects in stochastic time lagging reaction-diffusion model of quorum-sensing in bacterial populations, Proc. of the IEEE, “Days on Diffraction”, 2020. P. 62–67. https://doi.org/10.1109/DD49902.2020.9274653
  3. Kuttler C., Maslovskaya A. Computer Simulation of Communication in Bacterial Populations under External Impact of Signal-Degrading Enzymes, CEUR Workshop Proceedings, 2020. V. 2783. Paper 12 (17).
  4. Moroz L., Maslovskaya A. Computational techniques for modeling time-fractional dynamics of polarization switching in ferroelectrics, Proc. of the CEUR “Workshop Proceedings”, 2020. V. 2783. P. 180–191.
  5. Moroz L.I., Maslovskaya A.G. Computer simulation of hysteresis phenomena for ferroelectric switching devices, Proc of International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2020, P. 1–6. https://doi.org/10.1109/FarEastCon50210.2020.9271496
  6. Moroz L.I., Maslovskaya A.G. Hybrid stochastic fractal-based approach to modeling the switching kinetics of ferroelectrics in the injection mode, Mathematical Models and Computer Simulations, 2020. V. 12. P. 348–356. https://doi.org/10.1134/S207004822003014X
  7. Moroz L.I., Maslovskaya A.G. Simulation of nonlinear pyroelectric response of ferroelectrics near phase transition: fractional differential approach, Materials Science Forum, 2020. V. 992. P. 843–848. https://doi.org/10.4028/www.scientific.net/MSF.992843
  8. Pavelchuk A.V., Maslovskaya A.G. Approach to numerical implementation of the drift-diffusion model of field effects induced by a moving source, Russ. Phys. J., 2020. V 63. P. 105–112. https://doi.org/10.1007/s11182-020-02008-4
  9. Maslovskaya A.G., Afanasov L.S. Algorithms of multifractal wavelet analysis in problems of specifying raster images of self-similar structures, Vestnik Tomskogo Gosudarstvennogo Universiteta - Upravlenie, Vychislitel'naya Tekhnika i Informatika, 2020. V. 53. P. 61–71.

2019 год

  1. Pavelchuk A.V., Maslovskaya A.G. Mathematical modeling and computer simulation of electron irradiation field effects on polar dielectrics – Blagoveshchensk: Amur State Univ. Press, 2019. – 216 p. (in Russian)
  2. Maslovskaya A.G., Pavelchuk A.V. Simulation of delay reaction-drift-diffusion system applied to charging effects in electron-irradiated dielectrics, Proc. of IOP Conf. Series: Journal of Physics, 2019. V. 1163. P. 012009 (11). https://doi.org/10.1088/1742-6596/1163/1/012009
  3. Maslovskaya A.G., Moroz L.I. Mathematical modeling diffusion systems with delay applied to estimation of temperature distribution for heating materials under electron irradiation, IOP Conf. Series: Journal of Physics, 2019. V. 1203. P. 012046(11). https://doi.org/10.1088/1742-6596/1203/1/012046

2018 год

  1. Maslovskaya A.G., Barabash T.K. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation, Proc. of IOP Conf. Series: Journal of Physics, 2018. V. 973. P. 012038 (11). https://doi.org/10.1088/1742-6596/973/1/012038
  2. Pavelchuk A.V., Maslovskaya A.G. Numerical simulation of electron beam-induced dielectric charging using advanced computational scheme for solving semi-linear reaction-diffusion equation, World Journal of Modelling and Simulation, 2018. V. 14. No 2. P. 83–89.
  3. Maslovskaya A.G., Pavelchuk A.V. Electron-induced effects at diagnostics and modification of ferroelectrics: mathematical modelling, simulation and optimal control, Materials Science Forum, 2018. V. 945. P. 944–950. https://doi.org/10.4028/www.scientific.net/MSF.945.944

2017 год

  1. Maslovskaya A.G., Barabash T.K. Fractal parameterization analysis of ferroelectric domain structure evolution induced by electron beam irradiation, Proc. IOP Conf. Series: Materials Science and Engineering, 2017. V. 168. P. 012028 (6). https://doi.org/10.1088/1757-899X/168/1/012028
  2. Pavelchuk A.V., Maslovskaya A.G. Simulation of internal charge distribution and spatial charge characteristics of ferroelectrics irradiated by focused electron beam, Proc. SPIE 10176, Asia-Pacific Conference on Fundamental Problems of Opto- and Microelectronics, 2017. P. 101760 (12). https://doi.org/10.1117/12.2268165